Боятся ли светодиодные лампы перепадов напряжения

Умный сайт для вашего энергокомплекса

Качество электроэнергии – скрытая угроза для промышленного светодиодного освещения

Энергоэффективное светодиодное освещение в промышленности постепенно заменяет старые типы осветительных приборов. Однако в некоторых случаях компании сталкиваются с постоянными поломками новых дорогостоящих ламп. Причина этого — малоизвестные проблемы с качеством электроэнергии.

Преимущества светодиодов и неприятные сюрпризы

Когда предприятие рассматривает переход на светодиодные (LED) светильники, обычно на первом месте рассматриваются высокие характеристики светодиодов. Например, по сравнению с газоразрядными лампами высокой интенсивности (HID), светодиоды не содержат токсичных веществ, мгновенное включение, возможность регулирования яркости и срок службы не 1-2 года, а в среднем пять лет.

Потребление электроэнергии HID и LED-лампами

Светодиодное освещение действительно имеет все вышеперечисленные достоинства. Но в некоторых случаях, заменив тысячи ламп в производственных цехах, теплицах, складах и т. д., компания сталкивается с каскадом поломок светодиодных светильников, которые не отработали даже треть положенного срока. В ряде случаев светодиоды выходят из строя в срок от одного месяца до двух лет после начала эксплуатации. Хуже, когда лавинообразный рост отказов ламп происходит в течение года после завершения пятилетнего гарантийного срока.


Наиболее частая поломка LED-светильников — это выход из строя драйверов

В большинстве случаев поставщики меняют драйверы светодиодов (электронные блоки управления питанием LED-ламп). Но если ламп несколько тысяч, то ремонт обойдется слишком дорого и потребует много времени. Не говоря уже об остановке производства в случае, когда продолжение работы без освещения невозможно. В таких случаях убытки могут достигать сотни миллионов рублей. Очевидно, это не тот результат, которого ожидали руководители предприятия, переходя на новый тип надежного и экономически эффективного LED-освещения.

Новые лампы над старыми проблемами

Вернуть старые HID-лампы в большинстве случаев будет во много раз дороже, чем починить светодиодную систему. К тому же нет смысла отказываться от преимуществ LED. Необходимо лишь решить проблему с качеством электроэнергии, которое для светодиодов должно быть более высоким, как и для другого современного оборудования. Яркие лампы HID используют электромагнитный балласт из меди и железа и могут выдержать практически любые помехи в электросети. Чаще они выходят из строя из-за неправильного теплового режима работы, чем из-за плохого качества энергии. Поэтому линиям питания HID-освещения часто не уделяют особого внимания. В настоящее время большинство производителей LED предлагают мощные промышленные светильники, работающие под напряжением до 480 В переменного тока. К сожалению, зачастую производители не учитывают особенности промышленного использования светильников, опираясь лишь на опыт в области уличного освещения. В результате, драйверы LED проектируются для защиты от скачков напряжения и обычно оснащаются устройствами защиты от перенапряжений, рассчитанными на 10 кВ при 10/20 кА.

В случае использования промышленного светодиодного освещения возникают более сложные проблемы с качеством электроэнергии. На производстве существует множество потребителей с нелинейной нагрузкой, например, регулируемые приводы (ШИМ/ЧИМ) или асинхронные двигатели, потребляющие большие пусковые токи. Эти устройства создают в питающей сети значительный уровень помех в широком диапазоне частот и способны значительно ухудшить качество энергии во всех уровнях, высоких и низких частотах. Помехи создают также переключения контакторов.


Наглядная разница яркости HID и LED ламп

В общем спектре помех присутствуют интергармоники. В европейские технические требования по качеству электроэнергии понятие интергармоники было включено в 1994 г. Это явление приводит к сбоям в работе детекторов перехода через ноль, например, в устройствах регулирования яркости светодиодных светильников. Чаще всего, источником интергармоник становятся изношенные электродвигатели, сварочные аппараты, индукционные печи и другое оборудование. В отдельных случаях к поломке светодиодных светильников приводят периодические кратковременные аномалии в электросети. На рисунке 3 виден суточный циклический график напряжения фаз и нейтрали промышленной электросети. В разные периоды времени было зафиксировано резкое падение на разных фазах.


Данные мониторинга напряжения на предприятии, где произошла поломка светодиодного освещения

Ошибкой является использование лишь общих параметров мониторинга качества электроэнергии и отсутствие данных о явлениях, которые могут объяснить причину поломки драйверов светодиодов. В итоге короткие переходные процессы, приводящие к скачкам напряжения, выпадают из поля зрения .

Решение проблемы: правильный мониторинг

В большинстве случаев правильный мониторинг качества электроэнергии позволяет своевременно выявить проблему и предотвратить поломку дорогостоящего светодиодного освещения. Однако для этого иногда необходимо обновить оборудование для мониторинга электросети. Дело в том, что старые приборы и программное обеспечение могут «игнорировать» важные сигналы, такие как аномалии гармоник и мерцания.

Необходимы анализаторы качества энергии, соответствующие межгосударственному стандарту IEC 61000-4-7:2009. В России этот стандарт с некоторыми изменениями называется ГОСТ 30804.4.7-2013 «Совместимость технических средств электромагнитная. Общее руководство по средствам измерений и измерениям гармоник и интергармоник для систем электроснабжения и подключаемых к ним технических средств». Он был принят в 2014 г. и учитывает современные требования к электронике и качеству энергии. Также в нем разнесены понятия гармоники, интергармоник и других спектральных составляющих от 2 кГц до 9 кГц.

Таким образом, главный специалист предприятия должен прежде всего документировать самые мощные, а также нелинейные нагрузки, работающие на линиях освещения. Например, большинство линий 480 В соединены вместе через общий переключатель на распределительном устройстве. Возможно, на предприятии имеется больше одной линии 480 В, но в любом случае необходимо знать, какие типы помех присутствуют на каждой линии, к которой будет подключаться LED-освещение. Необходимо выявить возможные ошибки в разводке фаз и нейтрали, правильно спроектировать и построить систему заземления, которая должна иметь низкий импеданс и выдерживать высокочастотные помехи.

Тщательный мониторинг качества энергии с помощью современных приборов является неотъемлемой частью надежного функционирования систем светодиодного освещения. Мониторинг должен проводиться до установки, непосредственно после, а также регулярно повторяться с длительными месячными периодами замеров для выявления всех возможных аномалий электросети.

Читайте также:  Какой фекальный насос выбрать для откачки канализации

В настоящее время подобные процедуры легко выполняются с помощью совершенных приборов для тестирования качества электроэнергии. Например, анализатор Fluke 1738 способен регистрировать более 500 параметров качества электроэнергии, включая уровни гармоник, скачки напряжения и искажения формы тока, которые могут привести к поломке драйверов светодиодных светильников.

Правильное использование подобных приборов позволяет сохранить дорогостоящее оборудование и максимально эффективно использовать инвестиции в энергоэффективное светодиодное освещение.

Если вам нужна профессиональная консультация по анализу качества электроэнергии, просто отправьте нам сообщение!

Источник: test-energy.ru

Мифы и правда о светодиодном освещении

Светодиод или LED (Light emitting diode) – это полупроводниковый прибор, излучающий свет при пропускании через него электрического тока.

Использование светодиодов в освещении является революционным, так как в результате этого состоялся переход света из «аналогового» в «цифровой» мир, что значительно расширило возможности по управлению светом и световыми приборами. Обычная LED-лампа стала сложным электронным устройством, которым можно управлять при помощи Wi-Fi, Bluetooth или других цифровых протоколов, а также использовать лампы как элемент «Интернета вещей».

В связи с внедрением новых технологий в освещение, выбирать лампочку традиционным образом, ориентируясь только на форму и мощность потребления, так же неразумно, как выбирать смартфон, опираясь только на форму и мощность зарядного устройства для него. Теперь, для правильного выбора, необходимо разбираться в особенностях LED технологии и сравнивать светильники/лампы по нескольким параметрам: световой поток, потребляемая мощность, индекс цветопередачи, цветовая температура, пульсация, полезный срок службы (детали в таблице ниже).

Основное, что нужно знать:

  • яркость LED лампы можно оценить только по световому потоку, а не по мощности
  • светодиод может работать очень долго, но количество излучаемого им света со временем уменьшается, поэтому срок службы светодиодной лампы оценивается как период, в течение которого количество света снизится не более чем на 30%(европейский стандарт оценки L70), а не как время до выхода из строя самого светодиода
  • Светодиоды способны излучать любые цвета, поэтому даже белый цвет может иметь разные цветовые оттенки (цветовую температуру) – от желтоватого (теплый свет) до голубоватого (холодный свет)
  • Светодиоды не боятся холода, но не любят жару – при высокой температуре они работают с меньшей эффективностью и чаще выходят из строя
  • Свет, излучаемый светодиодами не имеет инфракрасной составляющей, поэтому он не излучает тепло, но сами светодиоды при работе нагреваются, т.е. лампочка может быть теплой
  • Светодиоды также не излучают ультрафиолет и их свет не приводит к обесцвечиванию («выгоранию») предметов
  • Хотя яркость светодиодов можно регулировать, не во всех лампах/светильниках реализован такой функционал; возможность регулировки, как правило, указывается на упаковке лампы или в инструкции

Преимущества светодиодного освещения:

  • Высокая энергоэффективность – порядка в 10 раз выше, чем у ламп накаливания
  • Долгий срок службы – в 10-100 раз дольше, чем у традиционных источников света
  • Широкие возможности по управлению: можно регулировать яркость свечения и цвет, возможно управление по беспроводным протоколам, в том числе и удаленно (через Интернет)
  • Мгновенное включение – выдают 100% своего светового потока моментально (в отличие от люминесцентных ламп, которым нужно время на «прогревание»)
  • Устойчивость к колебаниям напряжения – качественная LED-лампа будет выдавать 100% светового потока в диапазоне сетевого напряжения 170-240В
  • Отсутствие в свете LED ламп UV-, IR-излучения – предметы интерьера не обесцвечиваются и не нагреваются в свете таких ламп
  • Устойчивость к низким температурам (в отличие от люминесцентных ламп)
  • Вибро- и ударостойкость – нет стекла, нечему разбиваться

Источник: www.moyo.ua

Что использовать – стабилизатор напряжения или тока при подключении светодиодов?

Все светодиоды, независимо от форм-фактора и электрических параметров, питаются током. Правильно заданный ток – это гарантия длительной и стабильной работы осветительного прибора. Так почему же производители светодиодной продукции часто вместо стабилизатора тока устанавливают стабилизатор напряжения? Как это сказывается на работе светодиодных ламп, лент, фонарей и прожекторов? Попробуем разобраться.

Стабилизаторы напряжения

Исходя из названия, эти устройства предназначены для поддержания напряжения в нагрузке на определённом уровне. При этом величина выходного тока зависит от самой нагрузки. Другими словами, сколько потребуется нагрузки, столько она возьмёт, но не более максимально возможного значения. Допустим, стабилизатор напряжения обладает такими выходными параметрами: 12В и 1 А. То есть на выходе всегда будет поддерживаться 12В, а ток потребления может быть в диапазоне от нуля до одного ампера. Существует два вида стабилизаторов напряжения: линейные и импульсные.

Как правило, регулирующим элементом в схеме стабилизатора является биполярный или полевой транзистор. Если этот транзистор работает в активном режиме, то стабилизатор называют линейным. Если же регулирующий транзистор работает в ключевом режиме, то стабилизатор называют импульсным.

Наиболее распространенными и недорогими являются линейные стабилизаторы напряжения, однако они имеют ряд недостатков:

  • низкий КПД;
  • при большом токе нагрузки нуждаются в теплоотводе;
  • имеют достаточно высокое падение напряжения.

Чтобы не сталкиваться с подобными недостатками, рекомендуется использовать стабилизаторы напряжения импульсного типа. Они бывают трех типов: повышающие, понижающие и универсальные. Импульсные стабилизаторы имеют высокий КПД, не нуждаются в дополнительном отводе тепла при больших токах нагрузки, но имеют более высокую стоимость.

Стабилизаторы тока

Простейший ограничитель тока – резистор. Его часто называют простейшим стабилизатором, что неверно, так как резистор не способен стабилизировать ток при колебании напряжения на своем входе.

Применение резистора в схеме питании светодиода допустимо только при стабилизированном входном напряжении. В противном случае все скачки напряжения передаются в нагрузку и негативно отражаются на работе светодиода. Эффективность резистивных ограничителей тока очень низкая, так как вся потребляемая ими энергия рассеивается в виде тепла.

Читайте также:  Как правильно утеплить лоджию в панельном доме

Немного выше КПД у конструкций на базе готовых интегральных микросхем (ИМ) линейных стабилизаторов. Схемы линейных стабилизаторов на базе ИМ выделяющиеся минимальным набором элементов, отсутствием помех и простой настройкой.

Чтобы избежать перегрева регулирующего элемента, разность входного и выходного напряжения должна быть небольшой, но достаточной (3-5 вольт). Иначе корпус микросхемы вынужден будет рассеивать невостребованную энергию, тем самым снижая КПД.

Драйверы для светодиодов на основе готовых ИМ линейных стабилизаторов выделяются дешевизной и доступностью элементов для сборки своими руками.

Наиболее эффективными принято считать токовые драйверы с широтно-импульсной модуляцией (ШИМ). Их конструируют на базе специализированных микросхем с цепью обратной связи и элементами защиты, что в несколько раз повышает надёжность всего устройства. Наличие в них импульсного трансформатора ведет к удорожанию схемы, но оправдано высоким КПД и сроком службы. Токовые ШИМ стабилизаторы с питанием от источника 12В несложно сделать своими руками, используя специализированную микросхему. Например, ИМС PT4115 от компании PowTech, которая разработана специально для схем питания светодиодов мощностью от 1 до 10 Вт.

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт — амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

Правильное и неправильное включение

Больше всего ошибок допускают автомобилисты, когда пытаются сэкономить на схеме питания светодиодного освещения. Часто автолюбители включают светодиодные приборы напрямую от аккумулятора, а потом жалуются на разные неполадки: моргание, потерю яркости и полное погасание кристалла. Всё это происходит из-за отсутствия промежуточного преобразователя, который должен компенсировать перепады напряжения в интервале от 10 до 14,5В. Ещё одна ошибка владельцев авто – подключение только через резистор, рассчитанный на среднее показание аккумулятора 12В. Резистор – линейный элемент, а значит, ток через него растет пропорционально напряжению. Подключение через резистор допускается при условии его расчета на 14,5В, но тогда придется смириться с неполной светоотдачей светодиодов при низких и средних значениях напряжения в бортовой сети. Поэтому однозначный верный способ подключения светодиодов в автомобиле – это использование стабилизатора тока, желательно импульсного типа.

В различных осветительных конструкциях на основе светодиодов часто используются именно стабилизаторы напряжения. Почему так происходит? Во-первых, они намного дешевле качественных токовых драйверов. Во-вторых, чтобы из стабилизатора напряжения получился более-менее надёжный драйвер достаточно на выходе установить резистор, грамотно рассчитав его мощность и сопротивление. Такое схемотехническое решение часто применяется в недорогих LED лампах и осветительных конструкциях с применением светодиодных лент.

Большинство светодиодных лент питается стабильным напряжением 12В. Если рассмотреть конструкцию ленты более детально, то можно увидеть, что она разделена на небольшие участки. Как правило, каждый участок состоит из трёх SMD­ светодиодов и одного токозадающего резистора. Падение напряжения на одном светоизлучающем элементе в среднем составляет 2,5-3,5 В, то есть максимум 10,5В в сумме. Остаток гасится резистором, номинал которого изготовитель подбирает под тип используемых светодиодов. Поэтому подключение светодиода через связку из стабилизатора напряжения и резистора можно считать правильной.

Выходная мощность стабилизатора должна быть больше потребляемой мощности нагрузки примерно на 30%.

Если использовать простой блок питания без стабилизации (трансформатор, диодный мост и конденсатор), то при небольшом увеличении напряжения сети, его пропорционально уменьшенная часть будет равномерно распределяться на всех четырёх элементах каждого участка ленты. В итоге вырастет ток, температура кристалла и, как следствие, начнется необратимый процесс деградации светодиодов.

Самым правильным схемотехническим решением является применение стабилизатора тока импульсного типа. На сегодняшний день – это оптимальный вариант, который используют все ведущие производители светодиодных изделий. Токовый драйвер с ШИМ регулятором практически не греется, эффективен и надёжен.

Так чему же отдать предпочтение: дешевому стабилизатору напряжения с резистором или более дорогому токовому драйверу? Правильный ответ скрыт в выражении: «Любая экономия должна быть оправдана». Если Вам нужно подключить десяток слаботочных светодиодов или не более одного метра ленты, то выбор в пользу первого варианта нельзя назвать ошибочным.

Но если ваша цель – запитать фирменные светодиоды с мощностью каждого кристалла более 1 Вт, то без качественного токового драйвера не обойтись. Потому что стоимость таких излучающих диодов намного выше цены на драйвер.

Источник: ledjournal.info

Недостатки светодиодных ламп. Что в них плохого?

Хотя мы производим и продаём светодиодные лампы, тем не менее, нужно сказать несколько слов о тех недостатках, которые присущи светодиодным лампам вообще.

Если Вы собираетесь купить светодиодные лампы, а стоят они относительно не дёшево, то, с нашей точки зрения, Вы должны знать об их минусах. Обилие дифирамбов светодиодному освещению никак не способствует осознанному выбору – не бывает всё только хорошо. Итак,

Дорого

Решив заменить Ваши лампы накаливания на светодиодные, будьте готовы заплатить до 10 раз больше – примерно во столько раз они дороже. И это их первый и главный минус.

Читайте также:  Можно ли строить баню зимой

Высокая цена компенсируется 10-и кратной экономией электроэнергии. Кроме того светодиодные лампы гораздо реже перегорают, а это дополнительная экономия на цене новых ламп накаливания на замену. И не забудьте о своём времени и лёгкой головной боли – вспомнить, что нужно купить лампочку взамен сгоревшей, вспомнить, какой у неё цоколь, а ещё бы неплохо про запас в ту комнату, но какие туда лампы нужны. И т.п.

В зависимости от режима использования момент окупаемости может наступить уже через 6 месяцев после замены ламп на светодиодные.

Тут нужно сделать одно замечание. В последнее время на рынке очень много предложений светодиодных ламп по бросовым ценам. Но не стоит обольщаться на этот счёт. Мы купили несколько таких изделий, разобрали и протестировали их и получили очень неутешительные результаты .

Большой размер

Это второй недостаток. Светодиодные лампы по всем параметрам больше условно аналогичных ламп накаливания. Они шире, длиннее, тяжелее.

Причина этого технологическая. Лампы накаливания не боятся высокой температуры, они могут нагреваться вплоть до температур конструктивного разрушения, когда стекло или клей перестают быть твердыми. Поэтому их обычный нагрев до 100-300 градусов практически никак не сказывается на функциональности (конечно, если не касаться вопросов пожаробезопасности).

С другой стороны, светодиоды не должны нагреваться очень сильно, т.к. при нагреве существенно падает их эффективность и усиливается процесс выгорания – они тускнеют. Поэтому их нужно охлаждать, поэтому в светодиодных лампах есть радиатор. И чем мощность лампы выше, тем радиатор будет больше.

Не любую лампу можно заменить светодиодной

В некоторых случаях большой размер и радиатор приводят к тому, что отдельным лампам невозможно правильно сделать светодиодный аналог. Это также нужно записать в минусы светодиодных ламп.

Например, для свечи с цоколем миньон (E14) мощностью 60 ватт сделать достойный светодиодный аналог практически нельзя – физически не хватит места для размещения нужного радиатора, а уменьшение радиатора приведёт к перегреву.

Т.е. такая светодиодная лампа (даже если её сделать) будет либо очень большой, либо будет недолго работать из-за перегрева. В первом случае лампа не поместится в предназначенные для неё светильники, а во втором – с учётом срока службы и цены более выгодным может оказаться использование энергосберегающих или даже старых ламп накаливания.

Хотя несомненно, что спрос на лампы “чтобы была маленькая и мощная” есть. Как ответ на этот спрос на российском рынке появилось много предложений светодиодных свечей с цоколем Е14 мощностью по 6 ватт и даже по 8. Но чудес не бывает. Это почти всегда в некотором роде маркетинг. Будьте внимательны при покупке таких светодиодных ламп!

Мощная светодиодная лампа должна быть большой!

Направленный свет

Свет светодиодной лампы, как правило, имеет направленный характер. Она плохо освещает сбоку от себя и совсем плохо – сзади.

Поэтому, заменив лампы накаливания на светодиодные, в первое время можно ощущать дискомфорт от другого распределения световых потоков. Например, Ваши лампы светят в пол. Тогда потолок будет освещён только отраженным светом, и от этого будет казаться, что вообще в комнате стало темнее. Хотя это совсем не так. И через несколько дней этот эффект бокового зрения, скорее всего, больше не будет Вас беспокоить.

Не идеальная цветопередача

Коэффициент цветопередачи наших светодиодных ламп превышает отметку в 80, что вербально оценивается как “очень хорошая”. Хотя более высокий индекс имеют только лампы накаливания и естественный дневной свет, надо сказать, что это не идеальная цветопередача.

Точнее будет заметить, что это другая цветопередача. Поэтому замена на светодиодные ламп накаливания большой мощности и/или галогеновых в некоторых случаях может доставить неудобство для зрительного восприятия.

Например, интерьер с преобладанием глубоких синих оттенков (под галогеновыми лампами) после установки холодных светодиодных ламп изменит свой вид – синий цвет “съедет” в яркую фиолетовую область. И для людей, чувствительных к цвету, подобные превращения оттенков являются существенным недостатком.

Это также одна из причин, почему нельзя напрямую сравнивать лампы накаливания и светодиодные – очень много зависит от интерьера.

Мифы про светодиодные лампы

Светодиодные лампы горят вечно

Конечно, это не так. Как и любой электронный прибор, светодиодная лампа может сломаться или перестать работать должным образом.

Так что не надейтесь – светодиодные лампы Вам тоже придётся менять. Только не так часто – многократно реже.

Лампа на 2 ватта заменит 60 ватт

Этот удивительный миф принесла наша покупательница. А удивительное в нём то, что она процитировала своего электрика. Достаточно просто включить рядом эти две лампы, чтобы убедиться, что это далеко не так – современные светодиодны эффективны, но не до такой степени!

Даже если когда-либо будет достигнут теоретический предел эффективности светодиодов, то даже тогда лампа в два ватта мощности не будет давать столько же света, сколько 60-и ваттная лампа накаливания. Хотя надо признать, что она очень к этому приблизится.

На текущий же момент,

Чтобы получить что-то похожее на 60 ватт лампы накаливания, нужно взять светодиодную лампу со световой мощностью не меньше 7 ватт.

Более эффективные светодиоды существуют, но пока далеки от массового производства – их цена живёт в каком-то ином мире.

Всё ещё хотите купить светодиодные лампы?

Тогда приглашаем Вас в каталог бытовых светодиодных ламп:

Или кликните на кнопку слева и задайте свой вопрос – подробный ответ Вы получите очень быстро.

Источник: www.tauray.ru